Solution 9

1. Consider the problem of minimizing $f(x, y, z) = (x + 1)^2 + y^2 + z^2$ subjecting to the constraint $g(x, y, z) = z^2 - x^2 - y^2 - 1$, z > 0. First solve it by eliminating z and then by Lagrange multipliers.

Solution. Old method. From g = 0 get $z^2 = x^2 + y^2 + 1$. Plug in f to get $h(x, y) = (x+1)^2 + y^2 + x^2 + y^2 + 1$. When (x_0, y_0, z_0) is a local minimizer of f subject to g = 0, (x_0, y_0) is a local minimizer of h(x, y). Hence $h_x = h_y = 0$ at (x_0, y_0) which yields

$$2(x+1) + 2x = 0, \quad 2y + 2y = 0$$

so x = -1/2, y = 0. We conclude that $(-1/2, 0, \sqrt{5}/2)$ is a critical point and hence a candidate for the local minimizer. (With further reasoning, it is really a global minimizer.) New method, there is some λ such that

$$x + 1 = \lambda x, \ y = \lambda y, \ z = -\lambda z, \ z^2 - x^2 - y^2 = 1$$
.

The fourth equation implies that z is positive, so the third equation yields $\lambda = -1$. Then we get x = -1/2, y = 0 and $z = \sqrt{5}/2$.

Note. Usually we don't have to check the condition $\nabla g \neq (0,0,0)$ before applying the theorem on Lagrange multipliers. You may check it if you like when everything is done.

2. Let f, g_1, \dots, g_m be C^1 -functions defined in some open U in \mathbb{R}^{n+m} . Suppose (x_0, y_0) is a local extremum of f in $\{(x, y) \in U : g_1(x, y) = \dots = g_m(x, y) = 0\}$. Assuming that $D_y G(x_0, y_0)$ is invertible where $G = (g_1, \dots, g_m)$, show that there are $\lambda_1, \dots, \lambda_m$ such that

$$\nabla f + \lambda_1 \nabla g + \dots + \lambda_m \nabla g_m = 0$$
,

at (x_0, y_0) .

Solution. Similar to the special case f(x, y, z) over g(x, y, z) = 0. What we need is a statement from linear algebra: Let E be an *n*-dimensional subspace of \mathbb{R}^{n+m} and u_1, \dots, u_m are *m*-many independent vectors perpendicular to E. Then for any w perpendicular to E, $w + \sum_{j=1}^{m} \lambda_j u_j = 0$. Proof: Pick an orthonormal basis of E, v_1, \dots, v_n . Then $v_1, \dots, v_n, u_1, \dots, u_m$ form a basis of \mathbb{R}^{n+m} . So

$$w + \mu_1 v_1 + \dots + \mu_n v_n + \lambda_1 u_1 + \dots + \lambda_m u_m = 0$$

Taking inner product with v_k , we get $0 = w \cdot v_k + \mu_k = \mu_k$ for all k. Hence $w + \sum_{j=1}^m \lambda_j u_j = 0$.

3. Solve the IVP for $f(t, x) = \alpha t(1+x^2), \alpha > 0, t_0 = 0$, and discuss how the (largest) interval of existence changes as α and x_0 vary.

Solution. The solution is given by

$$x(t) = \tan(\tan^{-1} x_0 + \alpha t^2/2)$$

where the tangent function is chosen so that $\tan : (-\pi/2, \pi/2) \to (-\infty, \infty)$. The (maximal) interval of existence is (-a, a) where

$$\sqrt{a} = \frac{1}{\alpha} (\pi - 2\tan^{-1}x_0)$$

We see that for fixed α , the interval shrinks as x_0 increases, and for fixed x_0 , it shrinks too as α increases. The maximal interval of existence depends on f, t_0 and x_0 in a complicated manner. 4. Let $f \in C(R)$ where R is a closed rectangle. Suppose x solves x' = f(t, x) for $t \in (a, b)$ with $(t, x(t)) \in R$. Show that x can be extended to be a solution in [a, b].

Solution. First, since (t, x(t)) remains in R which is bounded, there is $\{t_n\}, t_n \to b^-$ such that $x(t_n) \to z$ for some z. We claim in fact $x(t) \to z$ as $t \to b^-$. For $\varepsilon > 0$, take δ to satisfy $\delta < \varepsilon/(2M), M = \sup_R |f|$. Then for $t, b - t < \delta$, we can find some $t_n \in (t, b)$ such that $|x(t_n) - z| < \varepsilon/2$. Then

$$\begin{aligned} |x(t) - z| &\leq |x(t) - x(t_n)| + |x(t_n) - z| \\ &< \left| \int_{t_n}^t f(s, x(s)) \, ds \right| + \frac{\varepsilon}{2} \\ &\leq M |t_n - t| + \frac{\varepsilon}{2} \\ &\leq \varepsilon . \end{aligned}$$

By defining x(b) = z, we see that x(t) is continuous on (a, b]. In the relation

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) \, ds, \quad t \in (a, b) \ ,$$

we can let $t \to b^-$ to show it remains true in (a, b]. Similarly, we can show the solution extends to [a, b] too.

5. Let $f \in C(R)$ where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose that x solves x' = f(t, x) for $t \in [a, b]$ where (b, x(b)) lies in the interior of R. Show that there is some $\delta > 0$ such that x can be extended as a solution in $[a, b + \delta]$.

Solution. Solve the IVP of the equation passing the point (b, x(b)). Since this point lies in the interior of R, we can find a small rectangle R_1 inside R taking this point as the center. By applying the Picard-Lindelof theorem to R_1 we obtain a solution extending beyond b. By uniqueness it coincides with the old solution in their common interval of existence.

6. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).

Solution The proof is basically the same as in the equation case. Tutor will do it in class.

7. Let $\mathbf{e}_n = (0, \dots, 0, 1, 0, \dots,)$ by the sequence with 1 at the *n*-th place and equal to 0. Consider the sequence formed by these \mathbf{e}_j 's. Show that it has no convergent subsequences in the space l^p , $1 \le p \le \infty$ Recall that l^p is the space consisting of all sequences $\mathbf{a} = \{a_n\}$ satisfying $\|\mathbf{a}\|_p = (\sum_n |a_n|^p)^{1/p} < \infty$ and $\|\mathbf{a}\|_{\infty} = \sup_n |a_n|$.

Solution. Suppose on the contrary this sequence has a limit $\mathbf{a} = \{a_n\}$. (I have used bold letters to denote sequences.) Then $\lim_{n\to\infty} \|\mathbf{e}_n - \mathbf{a}\| = 0$. From the definition of the l^p -norm it means every component of $\mathbf{e}_n - \mathbf{a}$ tends to zero. Since the k-component of \mathbf{e}_n becomes zero when n > k, the sequence \mathbf{a} must be the zero sequence. Therefore, in case the sequence formed by \mathbf{e}_n 's has a convergent subsequence, it also converges to the zero sequence in the l^p -norm. But this is impossible since $\lim_{n\to\infty} \|\mathbf{e}_{n_k} - \mathbf{0}\|_p = 1$.

8. Consider $\{f_n\}, f_n(x) = x^{1/n}$, as a subset \mathcal{F} in $\mathbb{C}[0, 1]$. Show that it is closed, bounded, but has no convergent subsequence in $\mathbb{C}[0, 1]$.

Solution. It means \mathcal{F} is not precompact. \mathcal{F} is bounded as $||f_n||_{\infty} \leq 1$ for all $f \in \mathcal{F}$. Next, we claim that it has no convergent subsequence. Suppose on the contrary there is one subsequence $\{f_{n_j}\}$ converges to some $g \in C[0, 1]$. Then, for each x, one must have $\lim_{j\to\infty} f_{n_j}(x) = g(x)$. However, it is clear that the pointwise limit of f_n is the function $f(x) = 1, x \in (0, 1]$ and equals 0 at x = 0. So g must coincide with f, but this is impossible as q is continuous on [0, 1] but f is discontinuous at x = 0.

We still need to check that \mathcal{F} is closed. Let $\{h_n\}$ be a sequence in \mathcal{F} converging to some $h \in C[0, 1]$. Consider two cases. First, this sequence contains infinitely many distinct functions. Then we can extract a subsequence from it which is also a subsequence of $\{f_n\}$. As above we see that this is impossible because h is continuous but f is not. Second, $\{h_n\}$ contains only finitely many functions. Then one function, say, f_{n_0} , appears infinitely many times. We can take a subsequence $\{h_{n_j}\}$ consisting of the single f_{n_0} . It must be true that $h = f_{n_0} \in \mathcal{F}$. We conclude that \mathcal{F} is a closed set.

9. Prove that $\{\cos nx\}_{n=1}^{\infty}$ does not have any convergent subsequence in C[0,1].

Solution. By Arzela Theorem it suffices to show that this sequence has no subsequence that is equicontinuous. Suppose on the contrary, given $\varepsilon > 0$, there exists some $\delta > 0$ such that

 $|\cos n_k x - \cos n_k y| < \varepsilon, \quad \forall k \ge 1, \ x, y, \ |x - y| < \delta.$

Now, take $\varepsilon = 1$ so δ is fixed. Take x = 0 and $y = \pi/n$. When n is large $|0 - \pi/n| < \delta$, one should have $|\cos n0 - \cos n\pi/n| < \varepsilon = 1$. But actually we have $|\cos n0 - \cos n\pi/n| = 2$, contradiction holds.

10. Show that any finite set in $C(\overline{G})$ is bounded and equicontinuous.

Solution. Recall that any continuous function in G is uniformly continuous. (The proof is similar to the special case C[a, b].) Now, let the finite set be $\{f_1, \dots, f_N\}$. Since each f_k is uniformly continuous, for $\varepsilon > 0$, there is some δ_k such that $|f_k(x) - f_k(y)| < \varepsilon$ for all $x, y, |x - y| < \delta_k$. If we take $\delta = \min\{\delta_1, \dots, \delta_N\}$. Then $|f_k(x) - f_k(y)| < \varepsilon$ for $x, y, |x - y| < \delta$ and all k. On the other hand, it is clearly bounded by the maximum of $||f_1||_{\infty}, \dots, ||f_N||_{\infty}$.