Solution 9

1. Consider the problem of minimizing $f(x, y, z)=(x+1)^{2}+y^{2}+z^{2}$ subjecting to the constraint $g(x, y, z)=z^{2}-x^{2}-y^{2}-1, z>0$. First solve it by eliminating z and then by Lagrange multipliers.

Solution. Old method. From $g=0$ get $z^{2}=x^{2}+y^{2}+1$. Plug in f to get $h(x, y)=$ $(x+1)^{2}+y^{2}+x^{2}+y^{2}+1$. When $\left(x_{0}, y_{0}, z_{0}\right)$ is a local minimizer of f subject to $g=0$, $\left(x_{0}, y_{0}\right)$ is a local minimizer of $h(x, y)$. Hence $h_{x}=h_{y}=0$ at $\left(x_{0}, y_{0}\right)$ which yields

$$
2(x+1)+2 x=0, \quad 2 y+2 y=0
$$

so $x=-1 / 2, y=0$. We conclude that $(-1 / 2,0, \sqrt{5} / 2)$ is a critical point and hence a candidate for the local minimizer. (With further reasoning, it is really a global minimizer.)

New method, there is some λ such that

$$
x+1=\lambda x, y=\lambda y, z=-\lambda z, z^{2}-x^{2}-y^{2}=1
$$

The fourth equation implies that z is positive, so the third equation yields $\lambda=-1$. Then we get $x=-1 / 2, y=0$ and $z=\sqrt{5} / 2$.

Note. Usually we don't have to check the condition $\nabla g \neq(0,0,0)$ before applying the theorem on Lagrange multipliers. You may check it if you like when everything is done.
2. Let f, g_{1}, \cdots, g_{m} be C^{1}-functions defined in some open U in \mathbb{R}^{n+m}. Suppose $\left(x_{0}, y_{0}\right)$ is a local extremum of f in $\left\{(x, y) \in U: g_{1}(x, y)=\cdots=g_{m}(x, y)=0\right\}$. Assuming that $D_{y} G\left(x_{0}, y_{0}\right)$ is invertible where $G=\left(g_{1}, \cdots, g_{m}\right)$, show that there are $\lambda_{1}, \cdots, \lambda_{m}$ such that

$$
\nabla f+\lambda_{1} \nabla g+\cdots+\lambda_{m} \nabla g_{m}=0
$$

at $\left(x_{0}, y_{0}\right)$.
Solution. Similar to the special case $f(x, y, z)$ over $g(x, y, z)=0$. What we need is a statement from linear algebra: Let E be an n-dimensional subspace of R^{n+m} and u_{1}, \cdots, u_{m} are m-many independent vectors perpendicular to E. Then for any w perpendicular to $E, w+\sum_{j=1}^{m} \lambda_{j} u_{j}=0$. Proof: Pick an orthonormal basis of E, v_{1}, \cdots, v_{n}. Then $v_{1}, \cdots, v_{n}, u_{1}, \cdots, u_{m}$ form a basis of \mathbb{R}^{n+m}. So

$$
w+\mu_{1} v_{1}+\cdots+\mu_{n} v_{n}+\lambda_{1} u_{1}+\cdots+\lambda_{m} u_{m}=0
$$

Taking inner product with v_{k}, we get $0=w \cdot v_{k}+\mu_{k}=\mu_{k}$ for all k. Hence $w+\sum_{j=1}^{m} \lambda_{j} u_{j}=$ 0 .
3. Solve the IVP for $f(t, x)=\alpha t\left(1+x^{2}\right), \alpha>0, t_{0}=0$, and discuss how the (largest) interval of existence changes as α and x_{0} vary.
Solution. The solution is given by

$$
x(t)=\tan \left(\tan ^{-1} x_{0}+\alpha t^{2} / 2\right)
$$

where the tangent function is chosen so that $\tan :(-\pi / 2, \pi / 2) \rightarrow(-\infty, \infty)$. The (maximal) interval of existence is $(-a, a)$ where

$$
\sqrt{a}=\frac{1}{\alpha}\left(\pi-2 \tan ^{-1} x_{0}\right) .
$$

We see that for fixed α, the interval shrinks as x_{0} increases, and for fixed x_{0}, it shrinks too as α increases. The maximal interval of existence depends on f, t_{0} and x_{0} in a complicated manner.
4. Let $f \in C(R)$ where R is a closed rectangle. Suppose x solves $x^{\prime}=f(t, x)$ for $t \in(a, b)$ with $(t, x(t)) \in R$. Show that x can be extended to be a solution in $[a, b]$.

Solution. First, since $(t, x(t))$ remains in R which is bounded, there is $\left\{t_{n}\right\}, t_{n} \rightarrow b^{-}$such that $x\left(t_{n}\right) \rightarrow z$ for some z. We claim in fact $x(t) \rightarrow z$ as $t \rightarrow b^{-}$. For $\varepsilon>0$, take δ to satisfy $\delta<\varepsilon /(2 M), M=\sup _{R}|f|$. Then for $t, b-t<\delta$, we can find some $t_{n} \in(t, b)$ such that $\left|x\left(t_{n}\right)-z\right|<\varepsilon / 2$. Then

$$
\begin{aligned}
|x(t)-z| & \leq\left|x(t)-x\left(t_{n}\right)\right|+\left|x\left(t_{n}\right)-z\right| \\
& <\left|\int_{t_{n}}^{t} f(s, x(s)) d s\right|+\frac{\varepsilon}{2} \\
& \leq M\left|t_{n}-t\right|+\frac{\varepsilon}{2} \\
& \leq \varepsilon .
\end{aligned}
$$

By defining $x(b)=z$, we see that $x(t)$ is continuous on $(a, b]$. In the relation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s, \quad t \in(a, b)
$$

we can let $t \rightarrow b^{-}$to show it remains true in $(a, b]$. Similarly, we can show the solution extends to $[a, b]$ too.
5. Let $f \in C(R)$ where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose that x solves $x^{\prime}=f(t, x)$ for $t \in[a, b]$ where $(b, x(b))$ lies in the interior of R. Show that there is some $\delta>0$ such that x can be extended as a solution in $[a, b+\delta]$.
Solution. Solve the IVP of the equation passing the point $(b, x(b))$. Since this point lies in the interior of R, we can find a small rectangle R_{1} inside R taking this point as the center. By applying the Picard-Lindelof theorem to R_{1} we obtain a solution extending beyond b. By uniqueness it coincides with the old solution in their common interval of existence.
6. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).

Solution The proof is basically the same as in the equation case. Tutor will do it in class.
7. Let $\mathbf{e}_{n}=(0, \cdots, 0,1,0, \cdots$,$) by the sequence with 1$ at the n-th place and equal to 0 . Consider the sequence formed by these \mathbf{e}_{j} 's. Show that it has no convergent subsequences in the space $l^{p}, 1 \leq p \leq \infty$ Recall that l^{p} is the space consisting of all sequences $\mathbf{a}=\left\{a_{n}\right\}$ satisfying $\|\mathbf{a}\|_{p}=\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{1 / p}<\infty$ and $\|\mathbf{a}\|_{\infty}=\sup _{n}\left|a_{n}\right|$.
Solution. Suppose on the contrary this sequence has a limit $\mathbf{a}=\left\{a_{n}\right\}$. (I have used bold letters to denote sequences.) Then $\lim _{n \rightarrow \infty}\left\|\mathbf{e}_{n}-\mathbf{a}\right\|=0$. From the definition of the l^{p}-norm it means every component of $\mathbf{e}_{n}-\mathbf{a}$ tends to zero. Since the k-component of \mathbf{e}_{n} becomes zero when $n>k$, the sequence a must be the zero sequence. Therefore, in case the sequence formed by \mathbf{e}_{n} 's has a convergent subsequence, it also converges to the zero sequence in the l^{p}-norm. But this is impossible since $\lim _{n \rightarrow \infty}\left\|\mathbf{e}_{n_{k}}-\mathbf{0}\right\|_{p}=1$.
8. Consider $\left\{f_{n}\right\}, f_{n}(x)=x^{1 / n}$, as a subset \mathcal{F} in $C[0,1]$. Show that it is closed, bounded, but has no convergent subsequence in $C[0,1]$.

Solution. It means \mathcal{F} is not precompact. \mathcal{F} is bounded as $\left\|f_{n}\right\|_{\infty} \leq 1$ for all $f \in \mathcal{F}$. Next, we claim that it has no convergent subsequence. Suppose on the contrary there is one subsequence $\left\{f_{n_{j}}\right\}$ converges to some $g \in C[0,1]$. Then, for each x, one must have
$\lim _{j \rightarrow \infty} f_{n_{j}}(x)=g(x)$. However, it is clear that the pointwise limit of f_{n} is the function $f(x)=1, x \in(0,1]$ and equals 0 at $x=0$. So g must coincide with f, but this is impossible as g is continuous on $[0,1]$ but f is discontinuous at $x=0$.
We still need to check that \mathcal{F} is closed. Let $\left\{h_{n}\right\}$ be a sequence in \mathcal{F} converging to some $h \in C[0,1]$. Consider two cases. First, this sequence contains infinitely many distinct functions. Then we can extract a subsequence from it which is also a subsequence of $\left\{f_{n}\right\}$. As above we see that this is impossible because h is continuous but f is not. Second, $\left\{h_{n}\right\}$ contains only finitely many functions. Then one function, say, $f_{n_{0}}$, appears infinitely many times. We can take a subsequence $\left\{h_{n_{j}}\right\}$ consisting of the single $f_{n_{0}}$. It must be true that $h=f_{n_{0}} \in \mathcal{F}$. We conclude that \mathcal{F} is a closed set.
9. Prove that $\{\cos n x\}_{n=1}^{\infty}$ does not have any convergent subsequence in $C[0,1]$.

Solution. By Arzela Theorem it suffices to show that this sequence has no subsequence that is equicontinuous. Suppose on the contrary, given $\varepsilon>0$, there exists some $\delta>0$ such that

$$
\left|\cos n_{k} x-\cos n_{k} y\right|<\varepsilon, \quad \forall k \geq 1, x, y,|x-y|<\delta
$$

Now, take $\varepsilon=1$ so δ is fixed. Take $x=0$ and $y=\pi / n$. When n is large $|0-\pi / n|<\delta$, one should have $|\cos n 0-\cos n \pi / n|<\varepsilon=1$. But actually we have $|\cos n 0-\cos n \pi / n|=2$, contradiction holds.
10. Show that any finite set in $C(\bar{G})$ is bounded and equicontinuous.

Solution. Recall that any continuous function in \bar{G} is uniformly continuous. (The proof is similar to the special case $C[a, b]$.) Now, let the finite set be $\left\{f_{1}, \cdots, f_{N}\right\}$. Since each f_{k} is uniformly continuous, for $\varepsilon>0$, there is some δ_{k} such that $\left|f_{k}(x)-f_{k}(y)\right|<\varepsilon$ for all $x, y,|x-y|<\delta_{k}$. If we take $\delta=\min \left\{\delta_{1}, \cdots, \delta_{N}\right\}$. Then $\left|f_{k}(x)-f_{k}(y)\right|<\varepsilon$ for $x, y,|x-y|<\delta$ and all k. On the other hand, it is clearly bounded by the maximum of $\left\|f_{1}\right\|_{\infty}, \cdots,\left\|f_{N}\right\|_{\infty}$.

